1,260 research outputs found

    Prospectives

    Get PDF
    Tiré de: Prospectives, vol. 15, no 3, oct. 1979.Titre de l'écran-titre (visionné le 24 janv. 2013

    Prospectives

    Get PDF
    Tiré de: Prospectives, vol. 16, no 4, déc. 1980Titre de l'écran-titre (visionné le 24 janv. 2013

    Prospectives

    Get PDF
    Tiré de: Prospectives, vol. 12, no 1, février 1976Titre de l'écran-titre (visionné le 24 janv. 2013

    Numerical Calibration of Steiner trees

    No full text
    International audienceIn this paper we propose a variational approach to the Steiner tree problem, which is based on calibrations in a suitable algebraic environment for polyhedral chains which represent our candidates. This approach turns out to be very efficient from numerical point of view and allows to establish whether a given Steiner tree is optimal. Several examples are provided

    Clustering and the hyperbolic geometry of complex networks

    Get PDF
    Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks or social networks. In this paper, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was proposed recently by Krioukov et al. as a mathematical model of complex networks, under the fundamental assumption that hyperbolic geometry underlies the structure of these networks. We give a rigorous analysis of clustering and characterize the global clustering coefficient in terms of the parameters of the model. We show how the global clustering coefficient can be tuned by these parameters and we give an explicit formula for this function.Comment: 51 pages, 1 figur

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Geometric Multicut: Shortest Fences for Separating Groups of Objects in the Plane

    Get PDF
    We study the following separation problem: Given a collection of pairwise disjoint coloured objects in the plane with k different colours, compute a shortest “fence” F, i.e., a union of curves of minimum total length, that separates every pair of objects of different colours. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC k-CUT, as it is a geometric analog to the well-studied multicut problem on graphs. We first give an O(n4log3n)-time algorithm that computes an optimal fence for the case where the input consists of polygons of two colours with n corners in total. We then show that the problem is NP-hard for the case of three colours. Finally, we give a randomised 4/3⋅1.2965-approximation algorithm for polygons and any number of colours

    Topological Price of Anarchy bounds for clustering games on networks

    Get PDF
    We consider clustering games in which the players are embedded in a network and want to coordinate (or anti-coordinate) their choices with their neighbors. Recent studies show that even very basic variants of these games exhibit a large Price of Anarchy. Our main goal is to understand how structural properties of the network topology impact the inefficiency of these games. We derive topological bounds on the Price of Anarchy for different classes of clustering games. These topological bounds provide a more informative assessment of the inefficiency of these games than the corresponding (worst-case) Price of Anarchy bounds. As one of our main results, we derive (tight) bounds on the Price of Anarchy for clustering games on Erdős-Rényi random graphs, which, depending on the graph density, stand in stark contrast to the known Price of Anarchy bounds
    corecore